THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA
Screening Test-Bhaskara Contest
(NMTC- at JUNIOR LEVEL $I X$ \& X Standards)
Saturday, 22nd August 2015.
Note:

1) Fill in the response sheet with your Name, Class, the institution through which you appear in the specified places.
2) Diagrams are only visual aids; they are not drawn to scale.
3) You are free to do rough work on separate sheets.
4) Duration of the test: 2 p.m. to 4. p.m.- 2 hours.

PART - A

Note:

- Only one of the choices A, B, C, D is correct for each question. Shade that alphabet of your choice in the response sheet. (If you have any doubt in the method of answering, seek the guidance of your supervisor).
- For each correct response you get 1 mark; for each incorrect response you lose $1 / 2$ mark.

1. The number of real solutions x of the equation $\sqrt[3]{x-1}+\sqrt[3]{x-3}+\sqrt[3]{x-5}=0$ is.
a) 0
b) 1
c) 2
d) 3
2. A merchant has 100 kg sugar, part of which he sells at 7% profit and the rest at 17% profit. He gains 10% on the whole. The amount of sugar (in kg) he sold at 7% profit is
a) 60
b) 50
c) 80
d) 70
3. Mahadeven was asked what is $\frac{16}{17}$ of a certain fraction. By mistake he divided the fraction by $\frac{16}{17}$ and got an answer, which exceeds the correct answer by $\frac{33}{340}$. The correct answer is
a) $\frac{60}{87}$
b) $\frac{62}{85}$
c) $\frac{64}{85}$
d) $\frac{67}{85}$
4. When $a=2015$ and $b=2016$, value of $\frac{a \sqrt{a}+b \sqrt{b}}{(\sqrt{a}+\sqrt{b})(a-b)}+\frac{2 \sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a b}}{a-b}$
a) 0
b) 1
c) $(2015)^{2}$
d) $\sqrt{2016}$
5. An arithmetical progression has positive terms. The ratio of the difference of the 4th and 8th term to the 15 th term is $\frac{4}{15}$ and the square of the difference of the 4 th and the 1 st term is 225 . Which term of the series is 2015 ?
a) 225
b) 404
c) 403
d) 410
6. The number of values of x which satisfy the equation $5^{2} \cdot \sqrt[x]{8^{x-1}}=500$ is
a) 1
b) 2
c) 3
d) 0
7. A number when divided by 899 gives a remainder 63 . The remainder when this number is divided by 29 is
a) 6
b) 7
c) 8
d) 5
8. A train leaves a station 1 hour before the scheduled time. The driver decreases the speed by 4 km / h. At the next station 120 km away, the train reached on scheduled time. The original speed of the train is (in km / h
a) 24
b) 36
c) 18
d) 22
9. $A B C D$ is a square. From the diagonal $B D$, a length $B X$ is cut off equal to $B A$. From X, a straight line $X Y$ is drawn perpendicular to $B D$ to meet $A D$ at Y. Then $A B+A Y=$
a) $\sqrt{2} B D$
b) $\frac{B D}{\sqrt{2}}$
c) $\sqrt{3} B D$
d) BD
10. The number of natural number pairs (x, y) in which $x>y$ and $\frac{5}{x}+\frac{6}{y}=1$ is
a) 1
b) 2
c) 3
d) 4
11. $A B$ and $A C$ are tangents at B and C to a circle. D is the mid point of the minor arc $B C$ with respect to the triangle $A B C, D$ is the
a) orthocenter
b) circumcentre
c) incentre
d) centroid
12. Two circles of radii in the ratio $1: 2$ touch each other externally. The centre of the small circle is C and that of the big is D . The point of contact is A. PAQ is a straight line where P is on the smaller circle and Q on the on the bigger circle (PAQ doesnot pass through C). The angle between the tangent at Q to the bigger circle and the diameter (produced if necessary) of the smaller circle is
a) 60°
b) 75^{0}
c) 80°
d) none of these
13. The number of real solutions of the equation $\frac{|x-3|-|x+1|}{2|x+1|}=1$ is
a) 0
b) 1
c) 2
d) 3
14. The number of real x which satisfies the equal by $\frac{8^{x}+27^{x}}{12^{x}+18^{x}}=\frac{7}{6}$ is
a) 2
b) 3
c) 4
d) 0
15. P, Q, R are there points on a circle of centre O. If $R S=$ radius of the circle and $\angle P S Q=12^{\circ}$, then $\angle P O Q=$
a) 36^{0}
b) 42^{0}
c) 48^{0}
d) 54^{0}

This missing page will be updated shortly.
21. In the adjoining figure $A B=A C$. The exterior angle $C A X=140^{\circ} D$ is the point on $A B$ such that $C B=C D . D E$ is drawn parallel to $B C$ to meet $A C$ at E. The measure of the $\angle D C E$ is \qquad

22. m, n are natural numbers. If $(m-8)(m-10)=2^{n}$, the number of pairs (m, n) is \qquad
23. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ for $-1<x<1$ and it is found that $f\left(\frac{3 x+x^{3}}{1+3 x^{2}}\right)=K f(x)$, then the value of K is \qquad
24. If a, b, c, d are positive integers such that $a^{5}=b^{4}, c^{3}=d^{2}$ and $\mathrm{c}-\mathrm{a}=19$, then the numerical value of $d-b$ is \qquad (you can express in powers of numbers)
25. The contents of two vessels containing water and milk in the ratio $1: 2$ and $2: 5$ are mixed in the ratio $1: 4$ The resulting mixture will have water and milk in the ratio \qquad
26. $n=560560560560563$. Saket divided n^{2} by 8 . He will get a remaindér \qquad
27. The least positive integer by which 396 be multiplied to make a perfect cube is \qquad
28. The value of $\sqrt[3]{\frac{1.2 .4+2.4 .8+\ldots . .+n \cdot 2 n \cdot 4 n}{1.3 .9+2.6 .18+\ldots . .+n \cdot 3 n .9 n}}$ is \qquad
29. n is a natural number. It is given that $(n+20)+(n+21)+\ldots \ldots+(n+100)$ is a perfect square. Then the least value of n is \qquad
30. $A B C D$ is a rectangle $D E F C$ is a parallelogram. $A B E F$ is a straight line. Area of the quadrilateral
CGEF is \qquad

\qquad () \qquad

