

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA Screening Test - Bhaskara Contest

(NMTC- at JUNIOR LEVEL IX & X Standards)

Saturday, 22nd August 2015.

Note:

- Fill in the response sheet with your Name, Class, the institution through which you appear in the specified places.
- 2) Diagrams are only visual aids; they are not drawn to scale.
- 3) You are free to do rough work on separate sheets.
- 4) Duration of the test: 2 p.m. to 4. p.m.- 2 hours.

PART - A

Note:

- Only one of the choices A,B,C,D is correct for each question. Shade that alphabet of your choice in the response sheet. (If you have any doubt in the method of answering, seek the guidance of your supervisor).
- For each correct response you get 1 mark; for each incorrect response you lose ½ mark.

	mark.						
1.	The number of rea	$\sqrt[3]{x-5} = 0$ is.					
	a) 0	b) 1	c) 2	d) 3			
2.			uich he sells at 7% prof ugar (in kg) he sold at 7 c) 80		17% profit. He		
3.		nadeven was asked what is $\frac{16}{17}$ of a certain fraction. By mistake he divided the frac					
	and got an answer, which exceeds the correct answer by $\frac{33}{340}$. The correct answer is						
	a) $\frac{60}{87}$		c) $\frac{64}{85}$		•		
4.	When $a = 2015$ and	and $b = 2016$, value of $\frac{1}{b}$	$\frac{a\sqrt{a} + b\sqrt{b}}{(\sqrt{a} + \sqrt{b})(a - b)} + \frac{2\sqrt{a}}{\sqrt{a}}$				
	a) 0	b) 1	c) $(2015)^2$	d) $\sqrt{2016}$			
5.	_	-	terms. The ratio of the d				

- 5. An arithmetical progression has positive terms. The ratio of the difference of the 4th and 8th term to the 15th term is $\frac{4}{15}$ and the square of the difference of the 4th and the 1st term is 225. Which term of the series is 2015?
 - a) 225
- b) 404
- c) 403
- d) 410
- 6. The number of values of x which satisfy the equation $5^2.\sqrt[3]{8^{x-1}} = 500$ is
 - a) 1
- · b) 2
- c) '

d) 0

8.	A train leaves a station 1 hour before the scheduled time. The driver decreases the speed bkm/h. At the next station 120km away, the train reached on scheduled time. The original speed the train is (in km/h								
	a) 24	b) 36	c) 18	d) 22					
9.	$ABCD$ is a square. From the diagonal BD , a length BX is cut off equal to BA . From X , a straight ine XY is drawn perpendicular to BD to meet AD at Y . Then $AB + AY = \frac{1}{2}$								
	a) $\sqrt{2}BD$	b) $\frac{BD}{\sqrt{2}}$	c) $\sqrt{3}BD$	d) BD					
10.	10. The number of natural number pairs (x, y) in which $x > y$ and $\frac{5}{x} + \frac{6}{y} = 1$ is								
	a) 1	b) 2	c) 3	d) 4					
11.	1. AB and AC are tangents at B and C to a circle. D is the mid point of the minor arc BC w respect to the triangle ABC, D is the								
	a) orthocenter	b) circumcentre	c) incentre	d) centroid					
	and that of the big circle and Q on the tangent at Q to the a) 60^{0}	is D. The point of contage on the bigger circle (bigger circle and the diage) 75°	ect is A. PAQ is a straight PAQ doesnot pass through the contraction of the part of the contraction of the c	the centre of the small circle is C that line where P is on the smaller ugh C). The angle between the essary) of the smaller circle is d) none of these					
13.	The number of real solutions of the equation $\frac{ x-3 - x+1 }{2 x+1 } = 1$ is								
	a) 0	b) 1	c) 2	d) 3					
14.	4. The number of real x which satisfies the equal by $\frac{8^x + 27^x}{12^x + 18^x} = \frac{7}{6}$ is								
	a) 2	b) 3	c) 4	d) 0					
	P, Q, R are there poor of centre O. If RS								
	circle and $\angle PSQ = 12^0$, then								

c) 48^0

7. A number when divided by 899 gives a remainder 63. The remainder when this number is divided

d) 5

d) 54⁰

c) 8

b) 42⁰

 $\angle POQ = -$

a) 36^{0}

by 29 is

b) 7

a) 6

This missing page will be updated shortly.

21. In the adjoining figure AB = AC. The exterior angle $CAX = 140^{\circ} D$ is the point on AB such that CB = CD. DE is drawn parallel to BC to meet AC at E. The measure of the $\angle DCE$ is _____

22. m, n are natural numbers. If $(m-8)(m-10) = 2^n$, the number of pairs (m, n) is

23. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
 for $-1 < x < 1$ and it is found that $f\left(\frac{3x+x^3}{1+3x^2}\right) = K f(x)$, then the value of K is ______

- 24. If a, b, c, d are positive integers such that $a^5 = b^4$, $c^3 = d^2$ and c-a = 19, then the numerical value of d b is _____ (you can express in powers of numbers)
- 25. The contents of two vessels containing water and milk in the ratio 1: 2 and 2: 5 are mixed in the ratio 1: 4. The resulting mixture will have water and milk in the ratio
- 26. n = 560560560560563. Saket divided n^2 by 8. He will get a remainder
- 27. The least positive integer by which 396 be multiplied to make a perfect cube is _____
- 28. The value of $\sqrt[3]{\frac{1.2.4 + 2.4.8 + \dots + n.2n.4n}{1.3.9 + 2.6.18 + \dots + n.3n.9n}}$ is
- 29. n is a natural number. It is given that (n+20)+(n+21)+...+(n+100) is a perfect square. Then the least value of n is
- 30. ABCD is a rectangle DEFC is a parallelogram. ABEF is a straight line. Area of the quadrilateral CGEF is

___()____()