ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

AMTI - NMTC - 2023 Jan. - PRIMARY - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagram and justification should be given wherever necessary.
4. Before start answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.
6. Maximum time allowed is THREE hours.
7. Three skilled workers Akbar, Baskar and Charles are employed by a person to do three different jobs. After completion of the work the total fee the person gave to the three workers is Rs 6000. It is found that Rs 400 more than $\frac{2}{5}$ of Akbar's share, Rs 200 more than $\frac{2}{7}$ of Baskar's share and Rs 100 more than $\frac{9}{17}$ of Charles' share are all equal. How much did each get?
8. A teacher of a primary class asked his students to calculate

$$
2 \frac{3}{7} \text { of } \frac{\left(13 \frac{1}{2}-9 \frac{2}{3}\right)}{\left(15 \frac{1}{5}-11 \frac{7}{30}\right)}=\mathrm{A}
$$

The teacher has 49A chocolates with him. He distributed equal number of chocolates (more than one chocolate) to each student of his class irrespective of whether the students got the correct answer or not. After the distribution the teacher is left with only one chocolate and he took it. Find the maximum strength of the class.
3. In a forest, Foxes always tell the truth and jackals always lie. When seen in poor light, they are indistinguishable. A person meets three of them A, B and C, in such a poor light. He asks A, "Are you a jackal?" Although A answers his question, he could not hear it clearly. B tells him that A denied being a Jackal and C says that A really is a jackal. Among the three how many are jackals?
4. Consider a natural number n. If n is less than 10 times the product of the digits, then n is called a dwarf number. Find the number of dwarf numbers between 10 and 200.
5. In the given figure,

$$
\begin{aligned}
& A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} \text { is } \\
& \text { a 7-pointed star. } \\
& \text { Find the value of } \\
& \angle A_{1}+\angle A_{2}+\angle A_{3}+\angle A_{4}+\angle A_{5}+\angle A_{6}+\angle A_{7}
\end{aligned}
$$

6. Two squares of side length 20 cm are joined together as in the diagram. With D, F as centres, quadrants are drawn. Taking $\pi=$ 3.14, find the area of the shaded portion. Let A be the area in cm^{2}. Find A.

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

AMTI - NMTC - 2023 Jan. - SUB-JUNIOR - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagram and justification should be given wherever necessary.
4. Before start answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.
6. Maximum time allowed is THREE hours.
7. A tray contains of 40 toffees. Jaya and Uma take in turn some toffees from the tray. Each time they are allowed to take 1, 2 or 3 toffees only. The person who gets the last toffee, wins. Jaya starts the game. Will she win? If so, how? If not, why?
8. Given $A=\left\{\frac{\frac{(a+b)^{2}+(a-b)^{2}}{b-a}-(a+b)}{\frac{1}{b-a}-\frac{1}{a+b}}\right\} \div\left\{\frac{(a+b)^{3}+(b-a)^{3}}{(a+b)^{2}+(a-b)^{2}}\right\}$
$\left.B=\left\{\frac{c-b}{(a-b)(a-c)}-\frac{c-a}{(b-c)(b-a)}+\frac{b-a}{(c-a)(a-b)}\right\} \div \frac{2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{(a-b)(b-c)(c-a)}\right\}$
If $a=2022, b=2023$, find $(A+B)$.
9. There are square papers of areas $1,2,3$, . . square millimetres. Asif started colouring them with red and green paint. He painted in red the papers whose areas can be written as the sum of two composite numbers and the rest in green. How many papers are painted green and what are their areas?
10. Find natural numbers a, b, c such that their sum is 6 , sum of their squares is 14 and the sum of the products of a and c, and b and c is equal to the square of one more than the product of a and b.
11. The volumes of three cubic containers C_{1}, C_{2}, and C_{3} are in the ration 1: 8: 27. The amount of water in them are in the ratio $1: 2: 3$. Water is poured from C_{1} to C_{2} and from C_{2} to C_{3} then the water level in all the containers is the same. Now $128 \frac{4}{7}$ litres of water is poured out from C_{3} to C_{2} after which a certain amount is poured from C_{2} to C_{1} so that the depth of water in C_{1} becomes twice that in C_{2}. This results in the amount of water in $C_{1} 100$ litres less than the original amount. How much water did each container contain originally?
12. In the adjoining figure, $A B C D E F$ and $D E G H I$ are respectively a regular hexagon and a regular pentagon. P is the intersection of AF and $H G$ and similarly Q. The bisector of $\angle F P G$ cuts $A B$ produced at R. Prove that $\angle Q=8 \angle R$.

13. $P Q R$ is an equilateral triangle. S is any point inside the triangle. $S A, S B, S C$ are respectively drawn perpendiculars to $P R, R Q$ and $P Q$. Find the ratio of

$$
\frac{S A+S B+S C}{Q A+R B+P C}
$$

8. In the adjoining figure, four equal circles of radius 7 cm each are drawn with centres at the four vertices of a quadrilateral. Find the total area of the shaded sectors.

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

AMTI - NMTC - 2023 Jan. - JUNIOR - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagram and justification should be given wherever necessary.
4. Before start answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.
6. Maximum time allowed is THREE hours.
7. x, y, z are positive reals and $(x+y+z)^{3}=32 x y z$. Find the numerical limits between which the expression $\frac{x^{4}+y^{4}+z^{4}}{(x+y+z)^{4}}$ lies?
8. $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7}$ is a regular heptagon. Prove that
$\frac{A_{1} A_{4}{ }^{3}}{A_{1} A_{2}{ }^{3}}-\frac{A_{1} A_{7}+2 A_{1} A_{6}}{A_{1} A_{5}-A_{1} A_{3}}=1$
9. ABCD is a square whose side is 1 unit. Let n be an arbitrary natural number. A figure is drawn inside the square consisting of only line segments, having a total length greater than $2 n$. (This figure can have many pieces of single line segments intersecting or non-intersecting). Prove that for some straight-line L which is parallel to a side of the square must cross the figure at least $(n+1)$ times.
10. m is a natural number. If $(2 m+1)$ and $(3 m+1)$ are perfect squares, then prove that m is divisible by 40.
11. Given 69 distinct positive integers not exceeding 100, prove that one can choose four of them a, b, c, d such that $a<b<c$ and $a+b+c=d$. Is this statement true for 68?
12. m, n are integers such that $n^{2}\left(m^{2}+1\right)+m^{2}\left(n^{2}+16\right)=448$. Find all possible ordered pairs (m, n).
13. $B D$ is the bisector of $\angle A B C$ of triangle $A B C$. The circumcircles of triangle $B C D$ and triangle $A B D$ cut $A B$ and $B C$ at E and F respectively. Show that $A E=C F$.
14. \boldsymbol{a} is a two-digit number. \boldsymbol{b} is a three-digit number. \boldsymbol{a} increased by \boldsymbol{b} percent is equal to \boldsymbol{b} decreased by \boldsymbol{a} percent. Find all possible ordered pairs $(\boldsymbol{a}, \boldsymbol{b})$.

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

AMTI - NMTC - 2023 Jan. - INTER - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagram and justification should be given wherever necessary.
4. Before start answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.
6. Maximum time allowed is THREE hours.
7. The positive rational numbers are labelled in a sequence as follows:
$\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{2}{2}, \frac{1}{3}, \frac{4}{1}, \frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \ldots \ldots$
For example, $\frac{1}{2}$ occurs at position 3 for the first time and $\frac{2}{3}$ occurs at position 9 for the first time.
(a) Find the positions of the first five occurrences of $\frac{1}{2}$.
(b) At what position does the rational $\frac{22}{23}$ occur for the first time in the list?
8. Find all integers x, y, z satisfying the equations

$$
\begin{aligned}
& (x+20)(y+12)(z-4)=3000 \\
& (x+20)(y-12)(z+4)=3000 \\
& (x-20)(y+12)(z+4)=3000
\end{aligned}
$$

3. Let $A B C$ be an acute angled triangle with $\angle A=60^{\circ}$ and $A B>A C$. Let I be the incentre and D, E, F be the mid points of the sides $B C, C A, A B$ respectively.
(a) If H is the orthocentre of the triangle $A B C$, prove that $2 \angle A H I=3 \angle B$.
(b) If M is the mid-point of $A I$, prove that M lies on the circumcircle of triangle $D E F$.
4. A line through a vertex of a triangle is called a dividend if it cuts the triangle into two triangles with equal perimeter. Let $A B C$ be a triangle. Show that the dividends of $A B C$ through the vertices A, B, C are concurrent.
5. Find all polynomials $P(x)$ with real coefficients such that $P(0)=-729$ and $(x-27) P(3 x)=27(x-1) P(x)$
6. There are 2023 people attending a conference. In any set of three people in the conference, either all the three know each other or exactly two among them know each other. Show that we can find a group of 1012 people at the conference who all know each other.
